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The angular momentum properties of different homotopic sectors of a group 
field are examined. The results are applied to gravity, which is essentially a group 
field, and it is shown that the usual gravity kinks do not have angular momentum 
1/2. 

We shall consider group fields,  that is to say, field theories for which the 
field or mapping ~ maps R 3 into a Lie group G, with ~ mapping the infinite 
boundary of R 3 into the group identity e. Space-time is assumed to have the 
topology of R 4, unless specified to the contrary. Mappings R 3 ----> S 3, R 3 
SO(3), R 3 ---~SU(n) would be typical examples. We shall assume that 
~r3(G ) ---Z, so that there is a kink counting number. This is true in most 
cases of physical interest, including gravity, which can be regarded as a 
group field. The purpose of this paper is to clarify the way in which 
extrinsic angular momentum (e.a.m.) �89 can arise for group fields. The main 
conclusion is that e.a.m. �89 cannot arise for the usual kinks of the gravita- 
tional field. 

We distinguish two sorts of angular momentum: intrinsic angular 
momentum, often called spin, and extrinsic angular momentum, often called 
orbital angular momentum. The intrinsic angular momentum for a field 4' is 
the tensor operator $ = ( S ~ ) ,  i , j = 1 , 2 , 3 ,  where S~ is the infinitesimal 
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generator for a rotation in the (i, j )  plane and has the form 

S 5 = _ ih~kSijkm~-~m 

For gravity, the intrinsic angular momentum is an integer. This follows from 
the algebraic properties of the operator S for a tensor field of rank 2. 
Intrinsic angular momentum �89 is common (the Dirac field being an exam- 
ple). It will be of no interest in this work. Instead, we shall be concerned 
with the extrinsic angular momentum, which is given by ~_ = - ihR x V. In 
certain kink field theories, field configurations belonging to the 1-kink 
sector may have e.a.m. �89 In such cases, the e.a.m. �89 arises if and only if the 
2~r-rotation loops in (the 1-kink sector of) field space are nontrivial, i.e., not 
deformable to a point. 

The transformation properties of the fields under rotation are of prime 
importance in determining the existence/nonexistence of e.a.m. �89 Let 
R(t)~SO(3) ,  0<~ t ~<1, denote a 2~r-rotation loop. Since all 2~r-rotation 
loops are homotopic to each other, we shall be specific and choose: 

cos27rt sin2~rt ! )  
R(t)  = IlRij(t)ll = -sin27rt  cos27rt 

0 0 

Suppressing the t, R, or Rij will be used to denote rotation by an arbitrary 
angle. 

The rotation of a vector x ~ R 3 can be represented by x; = Rox j or by 
x ' =  Rx, for short. Symmetry considerations require that the transformed 
fields cp' be such that the field equations appear the same for an observer 
using the transformed coordinate system x' and the transformed field cp' as 
for an observer using the original x and % This can be ensured, for example, 
by using a scalar field which, by definition, transforms according to 

This can be rewritten 

r  = 

r  =  (R-lx) 

Another alternative is to consider a vector field (such as the electric field) 
E(x) which transforms according to 

e,'(x') = a , g ( x )  
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The latter can be rewritten 

e / ( x )  = R,jEj(R-'x) 

To say that a field is spherically symmetric is to say that the field configura- 
tion is unchanged under rotation, i.e., E~ = E(x), or R~jEj(R-Ix)  = E i(x). 
This is readily checked for the usual inverse square law field E(x) = x / r 3 :  

RijE j ( R -ix)  = RijRfklxk/r 3 = x i / r  3. 

For a vector field that is spherically symmetric, a rotation loop in field 
space is a single point and therefore trivial. 

Let us now consider a group field. To be specific, we choose the range 
to be a 3-spheie, S 3. The latter can be parametrized by four real variables 
(O1, 02, 03, ~J4) subject to O~,O# = 1. Since 7r3($3) --- Z, there are kinks. Let 
~(x)=(O1,  02, ~3, 04) with O~,=f~(x), /~=1,2,3,4 be an example of a 
1-kink mapping. Is e.a.m. �89 possible for such a theory? This depends upon 
the transformation properties of the f~,. Suppose that (fl(x), f2(x), f3(x)) is 
defined to be a vector field and f4(x) to be a scalar field: 

f, '(x) = R,j (R-lx) 

f ; ( x )  = f 4 ( R - ' x )  

An example of a spherically symmetric 1-kink field exists, namely, the 
stereographic projection: 

Oi=f , ( x )=2ax i / ( rZ+a2) ,  i = 1 , 2 , 3  

O 4 - ~ ( x  ) = ( r 2 - a 2 ) / ( r  2 + a  2) 

Note that a > 0 is any constant and r = ]x[. In this case, given the assumed 
transformation properties of the f~, 

f, '(x) = f , (x)  

/ ; ( x )  = / 4 ( R - i x )  = / 4 ( x )  

so that the rotation loop is trivial. Any other (possibly nonspherically 
symmetric) 1-kink field will be homotopic to the stereographic projection. 
Thus all rotation loops in the 1-kink sector are trivial. E.a.m. �89 is not 
present in such a theory. 
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A theory with fields ranging over S 3 has also been considered by 
Skyrme. In his theory, the (f~(x)} are taken to be the components of a 
four-dimensional isovector and so all transform as scalars under spatial 
rotation (Skyrme, 1961, p. 128). Again, the { f~(x)} defined by the stereo- 
graphic projection provide an example of a 1-kink field configuration, but 
their transformation properties are now 

f~'(x) = f~( 'R- 'x) ,  ~t =1 ,2 ,3 ,4  

which could be written (including the rotation path parameter t explicitly): 

O:=R~' ( t )Oj ,  

0'4 = 04 

i =1 ,2 ,3  

This loop in the 1-kink sector o f  field space is not a single point. Its 
triviality/nontriviality is not a priori obvious. Williams and Zvengrowski 
(1977) have shown such a path to be nontrivial, so that the kink of Skyrme's 
theory has e.a.m. �89 

In the case of Skyrme's theory, it is straightforward to show that the 
n-kink sector will admit e.a.m. �89 for n odd but not for n even (Shastri, 
Williams, and Zvengrowski, 1980, p. 19). This is puzzling at first sight, since 
for a group field the different sectors of mapping space are homeomorphic 
images of each other. Consider a field theory with group G. Choosing a 
particular 1-kink field gx(x) (which might be the stereographic projection, 
for the S 3 case), the homeomorphisms between different sectors can be 
represented by g~'(x) for different choices of integer n. For example, if g(x) 
is a given 1-kink field, a 0-kink field h(x) can be constructed according to 
h(x) = g(x)g~-l(x). Similarly, a rotation loop in the 1-kink sector (assuming 
a scalar transformation law) g (R- l ( t )x ) ,  0 ~ t ~<1, gives rise to a loop in the 
0-kink sector: g(R-l(t)x).g~-l(x).  The two loops have the same (non)trivial- 
ity, but the latter is not a rotation loop. Instead, a rotation loop in the 
0-kink sector would be given by g(R-X(t)x) .g{l(R-l( t )x) .  Since g and gl 
are homotopic (g - gx), such a rotation loop is easily shown to be trivial: 

g( R - ' (  t )x) .g; l (  R - l (  t )x) - g,( R - l (  t )x ) .g ; ' (  R - ' (  t )x) = e 

where e is the group identity. Hence the 0-kink sector does not admit e.a.m. �89 
Now consider the case of the gravitational field. This is essentially a 

group field. The kink is controlled by the orientation of the light cones and 
for the space-time R 4 = R 3 x R 1 (with the R 1 contractible to a point) the 
homotopic classification of metrics is equivalent to classifying mappings 
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R3....~ p 3 =  SO(3) with the infinite boundary of R 3 mapping onto the 
identity element of SO(3). Consider the matrices II~..ll = diag(1,1,1, - 1) 
and I1~,.11 = diag(1,1,1,1). The Minkowski metric has elements %, and is an 
example of a 0-kink metric. An example of a 1-kink metric would be 

where the { O~-f~(x)} are given by the stereographic projection. This 
metric is spherically symmetric, rotating to produce a trivial loop so that 
e.a.m. �89 is not possible. This result was noted previously by Finkelstein 
(1966, 1978). Let us examine this point in detail. As in the S 3 case, the 
transformation properties are crucial. Williams (1971) and Shastri, Williams, 
and Zvengrowski (1980) have claimed that this metric (and any other metric 
of odd kink number) has e.a.m. �89 This claim is not valid. The former work 
assumes that the O~ - f,(x) transform as scalars, thereby rotating the x but 
not the f~, and (equivalently) the latter work involves rotating the f,  but not 
the x. This would be valid for a theory akin to Skyrme's in which the fields 
[mapping into SO(3), say] were scalars. However, the g~, are the compo- 
nents of a second-rank tensor field and transform under spatial rotations 
according to 

g i j ( X )  = RikRjmgkrn(R-Ix) 

with i , j , k , m  running over 1,2,3. A 27r-rotation loop for the 1-kink 
example is then 

Rik ( t ) Rjm( t )[ 8k. , - 2fk ( R - ' (  t )x) fr. ( R-' (t)x)] 

=Rik( t)Rjk - 2Rik( t )fk( R - t (  t )x)Rjm( t ) fm( R- l (  t )x) 

- 2 f , ( x ) f , . ( x )  

which is a single point in the space of 1-kink metrics. Hence e.a.m. �89 is not 
possible. 

The above argument was presented for a space-time R3X R t. The 
assumed boundary conditions allow R 3 tO be compactified so that the 
argument is valid for a space-time $ 3 •  R 1. Shastri, Williams, and 
Zvengrowski (1980) consider space-times of the form M • R t where the 
(closed, connected, orientable) 3-manifold M is either type 1 [admitting 
degree 1 maps into SO(3)] or type 2 [admitting only even degree maps into 
SO(3)]. Type 2 manifolds include S 3, $1• S 2, Sa• S t •  S 1 and spheres 
with handles. Metrics for type 2 manifolds can be written in the form 
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g~,,, = 6~,,- 2 O~,O, and so the above analysis implies that for type 2 mani- 
folds the gravitational field cannot have e.a.m. �89 

This work does not depend on the actual Lagrangian of gravity, with its 
concomitant canonical constraints and dynamical equations, but operates at 
the more general level of generating functionals and covariant quantization. 
Interesting results concerning gravitational e.a.m. �89 have been established 
by John Friedman and Rafael Sorkin (1980). Their analysis takes the actual 
Lagrangian into account though at the cost of constraining the gravitational 
field to admit Cauchy surfaces, and thus restricting it to a small part of the 
0-kink sector. 

The gravitational structures considered in the present work are quite 
different from those whose rotation gives rise to the e.a.m. �89 of Friedman 
and Sorkin. The former arise in topologically trivial, metrically anomalous 
gravitational universes that have no Cauchy surfaces. The latter arise in 
metrically trivial, topologically anomalous gravitational universes. In the 
terminology of Finkelstein and Misner (1959), the former (metrical anoma- 
lies) are M geons and the latter (topological anomalies) are O geons. 
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